
Platform-wide Deadlock Immunity for Mobile Phones

Horatiu Jula, Thomas Rensch, George Candea

School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland
{horatiu.jula, thomas.rensch, george.candea}@epfl.ch

Abstract—We present an implementation of our deadlock im-
munity system, Dimmunix, for mobile phone software. Within
Android 2.2 OS, we modified Dalvik VM, the JVM running all
the Android applications, to provide platform-wide deadlock
immunity. We successfully ran the Dimmunix-enabled Android
2.2 OS on a Nexus One phone. On the phone, we reproduced a
real deadlock involving Android’s NotificationManagerService
and StatusBarService classes, which froze the entire phone’s
interface. Android Dimmunix successfully detected the dead-
lock, and subsequently prevented its reoccurrence, with no
user intervention. Our tests show that Android Dimmunix
incurs 4-5% performance overhead and 4% memory overhead.
Therefore, Android Dimmunix is a practical and efficient
solution to cope with deadlocks on mobile phones. To the best of
our knowledge, Android Dimmunix is the first failure immunity
system for mobile phones, and the first one to provide platform-
wide failure immunity.

Keywords-Platform-wide, Deadlocks, Immunity, Android OS

I. INTRODUCTION

Having deadlock immunity for mobile applications is use-

ful; we describe below a real deadlock that we reproduced

on an Android phone. The deadlock involves Android’s

NotificationManagerService and StatusBarService classes,

and freezes the entire phone’s interface. Without deadlock

immunity, the phone may freeze whenever the user expands

the status bar while notifications are sent to the status bar.

With deadlock immunity, the phone hangs just once, then

the deadlock is deterministically avoided.

We enhanced Android OS, to provide deadlock immunity

to all the applications running on an Android phone, i.e.,

platform-wide deadlock immunity. The users (or the appli-

cation vendors) do not have to do anything to install (or

provide) deadlock immunity for Android applications. All

the applications installed on an Android phone automatically

run with deadlock immunity. We call the extension of

Android OS with deadlock immunity Android Dimmunix.

The main contribution of our work is providing platform-
wide deadlock immunity for mobile phones, with low per-

formance and memory overheads. There are two key distinc-

tions between Android Dimmunix and the previous Dimmu-

nix implementations [1]. First, Android Dimmunix provides

platform-wide deadlock immunity, while the previous Dim-

munix implementations provide application-level deadlock

immunity. Second, Android Dimmunix is designed for mo-

bile platforms, while the previous implementations are de-

signed for applications running on desktop/server machines;

mobile applications have more strict performance/memory

constraints compared to desktop/server applications.

There are tools that provide immunity against failures like

deadlocks [1], [2], data races and atomicity violations [3],

[4], [5], and buffer overruns [6]; however, to the best of

our knowledge, Android Dimmunix is (1) the first system

that provides platform-wide failure immunity, and (2) the

first system providing failure immunity to mobile phone

applications.

For a system that provides deadlock immunity to mobile

platforms, it is essential to have low performance and

memory overheads, because mobile phones have less CPU

power and RAM memory available, compared to desktop

computers or laptops. We show in §V that Android Dimmu-

nix incurs small performance and memory overheads, while

protecting against deadlocks all the applications running on

an Android phone.

The paper is structured as follows. In §II, we provide

background information about deadlock immunity and Dim-

munix. In §III, we discuss aspects related to platform-wide

deadlock immunity and the design of Android Dimmunix.

In §IV, we provide details about the implementation of

Android Dimmunix. In §V, we evaluate our implementation.

In §VI, we conclude.

II. BACKGROUND

In this section, we first define the deadlock immunity

property (§II-A), then we provide background information

about Dimmunix (§II-B).

A. Deadlock Immunity

We define in this section the deadlock immunity property

provided by Dimmunix. Dimmunix enables applications to

develop antibodies for observed execution flows that led

to deadlocks; we call these antibodies deadlock signatures.

Having the signatures of previously encountered deadlocks

in a persistent deadlock history, Dimmunix prevents re-

occurrences of these deadlocks, by preventing execution

flows matching signatures from the history. With every new

Appears in Proc. 7th Workshop on Hot Topics in System Dependability (HotDep), Hong Kong, China, June 2011

signature discovered by Dimmunix, the program’s resilience

to deadlocks is improved.

A deadlock signature is an approximation of the execution

flow that led to deadlock. It consists of (1) the call stacks

the deadlocked threads had when they acquired the locks

involved in the deadlock, and (2) the call stacks of the

deadlocked threads at the moment of the deadlock. We

call the former “outer call stacks” and the latter “inner

call stacks”. A frame in a call stack represents a position

(location) in the program. We denote by outer (inner) lock

statement, or simply outer (inner) position, the top frame

of an outer (inner) call stack. A deadlock bug is uniquely

delimited by the outer and inner positions of its signature; if

a deadlock happens at different outer and/or inner positions,

then it is a different deadlock bug.

For a deadlock to occur, its signature must be instantiated,

i.e., the program execution must match the signature (§II-B).

Therefore, by avoiding instantiations of the signature, Dim-

munix avoids the deadlock.

B. Dimmunix

Dimmunix is a tool for gaining immunity against dead-

locks with no assistance from programmers or users. Dim-

munix runs within the address space of the target program.

Dimmunix can be used by customers to defend against

deadlocks while waiting for a vendor patch, and by software

vendors as a safety net. Dimmunix handles only mutex dead-

locks, i.e., deadlocks involving mutex (monitor) acquisitions.

Therefore, in this paper we refer only to mutex deadlocks.

The Dimmunix architecture consists of two parts: (1) a

module that detects deadlocks and adds their signatures to a

persistent deadlock history, and (2) an avoidance module that

prevents reoccurrences of previously encountered deadlocks,

by avoiding instantiations of signatures from history.

The code that calls into Dimmunix can be directly instru-

mented into the target binary or can reside in a synchroniza-

tion library. This code intercepts the lock/unlock operations

in the target programs and transfers the control to Dimmunix

each time a lock/unlock operation is performed.

To detect deadlocks, Dimmunix maintains the synchro-

nization state in a resource allocation graph (RAG). The

interception code informs Dimmunix each time a thread is

about to request a lock, just acquired a lock, or is about to

release a lock. Based on these events, Dimmunix updates

the RAG accordingly. Every time a thread t requests a lock,

Dimmunix looks for cycles containing t. If a cycle is found,

it means that a deadlock involving thread t is about to occur.

Imagine a deadlock involving threads t1 and t2, and locks

l1 and l2; in the RAG, it appears as the cycle l1
CSout

1−→ t1
CSin

1−→

l2
CSout

2−→ t2
CSin

2−→ l1, annotated with the outer call stacks CSout
1

and CSout
2 , and inner call stacks CSin

1 and CSin
2 . The signature

of the deadlock consists of the pairs of outer and inner call

stacks, i.e., {(CSout
1 ,CSin

1),(CSout
2 ,CSin

2)}. Dimmunix saves

the signature to a persistent history, to avoid all future

occurrences of this deadlock. The inner call stacks are

available at the time of the deadlock. To obtain the outer

call stacks, Dimmunix has to keep track, for each lock

acquisition, of the call stack the owner thread had when

it acquired the lock.

Avoiding deadlocks consists of anticipating whether the

acquisition of a lock would lead to the instantiation of a

signature from the deadlock history. Only the outer call

stacks are relevant for the avoidance; the inner call stacks

are kept just to offer more information about the deadlock.

For a signature with outer call stacks CSout
1 , ...,CSout

n to be

instantiated, there must exist threads t1, ...,tn that either hold

or are allowed to wait for locks l1, ..., ln while having call

stacks CSout
1 , ...,CSout

n . Assume signature S with outer call

stacks CSout
1 and CSout

2 , and a thread t1 attempting to acquire

a lock l1 with call stack CSout
1 . To avoid instantiations of S,

Dimmunix first “pretends” that it allows t1 to acquire l1, i.e.,

it does not allow t1 to proceed, but it updates the internal

state as if it did. Then, Dimmunix checks if instantiations

of S are possible; if yes, Dimmunix suspends t1 until no

instantiations of S (or any other signature from the history)

are possible.

Dimmunix handles avoidance-induced deadlocks (i.e.,

starvation): when starvation occurs, Dimmunix saves the

signature of the avoidance-induced deadlock, and resumes

the suspended thread. Dimmunix will subsequently avoid

entering the same starvation condition again, just like it does

for a normal deadlock.

III. DESIGN

In this section, we discuss aspects related to platform-

wide deadlock immunity (§III-A), and present the most

important design choices we took, to efficiently provide

deadlock immunity for Android OS (§III-B).

A. Platform-wide Deadlock Immunity

We first explain the notions of platform-wide and

application-level deadlock immunity, from the user’s per-

spective. Platform-wide immunity means that all applica-

tions are immunized against deadlocks by default, without

having to be launched in a special way. Application-level

immunity means that the applications are not immunized

by default against deadlocks, and have to be executed in a

special way to run with Dimmunix.

We discuss three aspects concerning platform-wide dead-

lock immunity: First, we show that it cannot be implemented

in the kernel space; it has to be implemented in the user

space, i.e., in the synchronization library. Second, we com-

pare application-level to platform-wide deadlock immunity.

Third, we explain what needs to be done to have an efficient

platform-wide Dimmunix.

Platform-wide deadlock immunity has to be implemented

in the user space, i.e., in the synchronization library. All

2

the modern platforms/libraries providing synchronization

routines (e.g., JVM, POSIX threads) first attempt to acquire

a lock in the user space. Dimmunix must intercept all the

lock acquisitions. Since a lock may be acquired in the user

space, the interception must be done in the user space.

Since platform-wide Dimmunix has to run in user-space,

there is a different instance of Dimmunix running within

each process. Dimmunix’s avoidance and detection mecha-

nisms are application-local, i.e., deadlocks are detected and

avoided locally in each application, in isolation from the

other applications.

We compare now application-level to platform-wide dead-

lock immunity systems. Application-level Dimmunix can

be instrumentation-based or interception-based, i.e., it can

instrument the synchronization statements in the program

binary (e.g., by using AspectJ bytecode instrumentation

framework [7]), or it can intercept the synchronization

operations through a preloadable library (e.g., by using

LD_PPRELOAD). An instrumentation-based implementa-

tion has the possibility to instrument only the synchroniza-

tion statements previously involved in deadlocks (e.g., Java

Dimmunix), in order to minimize the performance overhead

and the intrusiveness. An interception-based implementation

(e.g., POSIX Threads Dimmunix) does not have this possi-

bility, because intercepting the synchronization operations

involves overriding the synchronization routines.

For platform-wide deadlock immunity, an interception-

based implementation is the most natural choice; Android

Dimmunix is interception-based. The only drawback of

an interception-based implementation is that it cannot se-

lectively instrument synchronization statements, while an

instrumentation-based implementation can. However, an

instrumentation-based implementation is more complicated,

because it would have to dynamically modify the binary of

every application, before executing it. Moreover, the binary

instrumentation/analysis frameworks are not mature enough

to allow a robust implementation. In future however, such

an implementation may be feasible.

An efficient platform-wide Dimmunix needs small CPU

and memory consumptions, because all the applications run

with Dimmunix. It is important to satisfy these requirements,

especially for mobile platforms, which are designed to

optimize the CPU and memory consumptions. To achieve

computational efficiency, the code on the critical path must

be optimized, i.e., the look-up of RAG nodes and the call

stack retrieval. For memory efficiency, we dynamically allo-

cate and reuse memory. In §IV, we give more details about

how we achieved an efficient implementation of Android

Dimmunix.

B. Deadlock Immunity for Android OS

In this section we explain the design choices we took in

the implementation of Android Dimmunix. First, we explain

our choice of implementing Dimmunix within Android’s

Dalvik VM. Second, we explain our decision to store only

the top frames in the outer call stacks; we also show that,

for synchronized blocks/methods, it is safe to use outer call

stacks of depth 1.

We implemented Android Dimmunix within the Dalvik

VM. More precisely, we changed the code of Dalvik VM’s

synchronization routines to call into Dimmunix, as we illus-

trate in Figure 1. Dalvik VM is a customized JVM, in which

Android OS runs all the applications. Since platform-wide

deadlock immunity cannot be implemented in the kernel

space (§III-A), an implementation within the Dalvik VM

is the natural choice.

Android OS

Dalvik VM

Synchronization Routines

APP1

Dimmunix
data

APPn

Dimmunix
data

....

Figure 1. The Architecture of Android Dimmunix.

Such an implementation allows Android Dimmunix to

detect and avoid deadlocks caused by lock inversions due

to wait() calls. We show how such an inversion can lead to

a deadlock, in the Java code below:

Thread t1: Thread t2:

synchronized(x) { synchronized(x) {

synchronized(y) { synchronized(y) {

x.wait(); }

} }

}

If thread t1 is executing x.wait() and thread t2 just acquired

monitor x, the two threads are going to deadlock: when

thread t1 finishes waiting on x, it will attempt to reacquire x,

while holding monitor y; thread t2 waits for y, while holding

x. To detect and avoid such deadlocks, we changed the code

of the Object.wait() native method: for each x.wait() call,

Dimmunix is called before and after the reacquisition of x,

at the end of the wait function.

An instrumentation-based Dimmunix for Java cannot han-

dle such deadlocks caused by wait() calls. For each x.wait()
call, the reacquisition of x at the end of the wait call has

to be intercepted; therefore, the code of the Object.wait()
native method has to be changed.

In order to obtain the outer call stacks, Android Dimmunix

needs to retrieve, for each lock acquisition, the call stack the

owner thread had when it acquired the lock. For each lock

l, Dimmunix stores in l.acqPos the call stack corresponding

3

to the last acquisition of l. In the signature of a deadlock

involving threads t1 and t2, and locks l1 and l2, the outer

call stacks are l1.acqPos and l2.acqPos.
Android Dimmunix uses outer call stacks of depth 1 in the

signatures. Retrieving the call stack of each lock acquisition

is expensive; therefore, we decided to retrieve only 1 frame,

at the cost of a higher false positives rate in the deadlock

avoidance.

Using outer call stacks of depth 1 can be harmful, if a pro-

gram uses mostly custom synchronization implemented with

explicit lock/unlock operations; Dimmunix would serialize

most of the synchronizations, as soon as the first deadlock

occurs. Consider a Java program that uses the following

wrapper of the RentrantLock class:

public class MyLock {

private ReentrantLock l;

public void lock() {

l.lock();

}

public void unlock() {

l.unlock();

}

}

If any deadlock happens in the program, the outer call

stacks will indicate the position p of the l.lock() statement

within the MyLock class. Dimmunix would serialize all the

synchronizations performed via objects of type MyLock,

because they are all performed at position p.

For synchronized blocks, it is safe to use outer call

stacks of depth 1, because the synchronized blocks that

appear in wrappers cannot be outer lock statements in a

deadlock signature. Synchronized methods are essentially

synchronized blocks, therefore we only discuss about syn-

chronized blocks. Synchronized blocks are intra-procedural,

i.e., a monitorexit(l) statement has to execute in the same

method as the corresponding monitorenter(l) statement, like

in the wrapper below:

public void lock() {

synchronized(l) {

//update state

}

}

Typically, the synchronized blocks from synchronization

wrappers are not nested; therefore, they cannot be the outer

positions of a deadlock signature, because the program

cannot deadlock inside them. If somehow these synchro-

nized blocks are nested, they are normally deadlock-free,

otherwise a program that heavily uses the wrapper is likely

to deadlock often; if such a program exists, it “deserves” to

be entirely serialized.

Android Dimmunix handles only synchronized

blocks/methods. However, this is not a major shortcoming;

there are 1,050 synchronized blocks/methods and only 15

explicit lock/unlock operations in Android 2.2 essential

applications.

IV. IMPLEMENTATION

We implemented Dimmunix in Android OS 2.2, within

the Dalvik VM, which runs all the Android applications. We

modified Dalvik VM, to call Dimmunix upon each monitor

acquisition/release.

Android Dimmunix has two components: the Dimmu-

nix core, which implements the deadlock immunity, and

the integration code, which (1) obtains the information

needed to call the Dimmunix core, (2) extends existing

Dalvik VM data structures, to provide instant access to per-

thread/monitor Dimmunix-related information, and (3) calls

the Dimmunix core. The core has 661 lines of code (LOC),

and the integration code has 155 LOC.

Android Dimmunix uses the following data structures:

The struct Node stores a RAG node corresponding to a

thread/monitor object. The struct Position stores the program

location of a monitorenter operation and the set of threads

that hold (or are allowed by Dimmunix to acquire) locks at

that location.

To achieve zero-overhead look-up of the RAG node cor-

responding to a thread/monitor object, we added a “node”
field in Dalvik’s Thread and Monitor structs. We also added

a “stackBuffer” field in struct Thread, where Dimmunix

retrieves the call stack. We illustrate these changes in the

code below:

typedef struct Thread {

...

Node node;//RAG node

char* stackBuffer;//call stack buffer

} Thread;

struct Monitor {

...

Node node;//RAG node

};

We describe now how Dimmunix’s data structures are

initialized. Whenever the Dalvik VM forks a new process,

the initDimmunix routine is called, to initialize Dimmunix’s

global data for that process, e.g., the deadlock history, and

the positions global map that associates a unique Position
object to each program location. Remember that Android

Dimmunix runs in user-space, therefore this global data is

per-process. We modified the routines that fork Dalvik pro-

cesses, i.e., Dalvik_dalvik_system_Zygote_fork and forkAnd-
SpecializeCommon, to initialize Dimmunix as soon as the

child process starts. Each time a thread (monitor) object

t (mon) is created by Dalvik’s allocThread (dvmCreate-
Monitor(Object* obj)) function, the integration code calls

initNode(&t->node, t, T_THREAD) (initNode(&mon->node,
obj, T_MONITOR)), to initialize the RAG node correspond-

ing to t (mon), and allocate memory for t->stackBuffer.

The Dimmunix core is called by three routines, upon

each monitorenter/monitorexit statement: The Request() rou-

tine executes before a monitorenter statement; it performs

deadlock detection and returns whether a deadlock signature

4

would be instantiated if the lock acquisition would be

approved. The Acquired() routine runs immediately after

a monitorenter statement, and the Release() routine runs

right before a monitorexit statement; these two routines

perform only RAG updates. For thread-safety, Dimmunix

uses a global lock within these methods. As we show in §V,

Dimmunix is efficient, even in the presence of this global

lock, because the calls to the three methods are cheap.

The Dalvik VM implements the monitorenter, moni-
torexit, and Object.wait() statements in the routines lock-
Monitor, unlockMonitor, and waitMonitor. We changed

lockMonitor to invoke the Request and Acquired Dimmunix

routines:

void lockMonitor(Thread* t, Monitor* mon){

//monitorenter(mon), before acquiring mon

dvmGetCallStack(t);

Position* pos = getPosition(t->stackBuffer);

int sigId;//matched sig in history

do {

sigId = Request(&t->node, &mon->node, pos);

//if instantiation found, yield and retry

if (sigId >= 0)

wait(history[sigId]);

} while (sigId >= 0);

//t is allowed to acquire mon

...

//after acquiring mon

Acquired(&t->node, &mon->node);

}

We implemented the dvmGetCallStack routine that retrieves

the top frame of a thread t’s call stack into the t->stackBuffer
buffer. As long as there is a signature S in history that is

instantiated, Dimmunix makes the caller thread wait on a

condition variable associated to S.

We changed the unlockMonitor and waitMonitor routines,

to call Dimmunix’ Release function, right before the monitor

is released. If the released monitor was acquired with a

call stack in the history, Dimmunix resumes all the threads

waiting on signatures containing that call stack, as we

illustrate in the code below:

//thread t, before releasing mon

Position* pos = mon->node.acqPos;

if (pos->inHistory) {

int sigId;

for (sigId = 0; sigId < histSize; sigId++) {

if (history[sigId].contains(pos))

notifyAll(history[sigId]);

}

}

Release(&t->node, &mon->node);

//release mon

Dimmunix turns the thin lock associated to an object

x into a fat lock, i.e., a Monitor object, as soon as a

monitorenter(x) statement is called. The reason is that a

RAG lock node is encapsulated in a Monitor object; the thin

lock is a simple integer field, which cannot accommodate a

RAG node. To make sure that each monitorenter statement

is executed on a fat lock, we added the code below before

calls to lockMonitor:
//if the lock is thin

if (LW_MONITOR(obj->lock) == NULL) {

pthread_mutex_lock(&globalLock);

//if still thin, fatten the lock

if (LW_MONITOR(obj->lock) == NULL) {

Monitor* mon = dvmCreateMonitor(obj);

obj->lock = (u4)mon | LW_SHAPE_FAT;

}

pthread_mutex_unlock(&globalLock);

}

Most of the CPU and memory consumptions are due to the

computations related to the call stacks. Dimmunix allocates

a unique Position object for each call stack of a synchro-

nization operation. Using call stacks of depth 1 minimizes

the number of Position objects. The Thread.stackBuffer field

makes the call stack retrieval more efficient; the field is

thread-local, and the dvmGetCallStack routine does not need

to allocate memory for storing the current call stack.

To eliminate the overhead incurred by the call stack

retrieval, the compiler could produce a unique id for each

synchronization statement, based on the location of that

statement. The ids would be constant in all the executions of

the application, because every id is bound to a program loca-

tion. Dimmunix can use the ids instead of the call stacks, to

identify synchronization statements. The compiler can pass

the id as a parameter to the lockMonitor, unlockMonitor, and

waitMonitor routines; this way, retrieving the id would not

incur any performance penalty.

If the deadlock signatures are on the critical path, Dim-

munix may incur significant performance overhead, due to

the computations performed in the avoidance code. More

precisely, the Request routine looks for signatures in the his-

tory that are instantiated. For signature matching, Dimmunix

maintains for each Position object p a queue that stores the

threads holding (or allowed to acquire) locks with position

(call stack) p. To reduce the number of memory allocations,

Dimmunix uses a second queue, where the elements deleted

from the main queue are stored. Whenever a thread t needs

to be added to the main queue and the second queue is non-

empty, Dimmunix pops an element from the second queue,

makes it point to t, and adds it to the main queue.

Android Dimmunix does not handle deadlocks involving

native code (i.e., using Android NDK). However, it is

possible to handle such deadlocks, by intercepting the syn-

chronization operations within the POSIX Threads library.

This must be done carefully, because the Dalvik VM already

uses this library to implement the synchronization operations

in Java. Therefore, Android OS should allow Dimmunix to

intercept the calls to the POSIX Threads synchronization

routines only when native code executes.

V. EVALUATION

We installed a Dimmunix-enabled Android 2.2 OS on a

Nexus One phone, equipped with a 1-core 1GHz CPU, and

5

512 MB of RAM memory. While using the applications

installed on the phone, we noticed no slowdown, compared

to the vanilla Android 2.2 OS installation.

We reproduced a real deadlock involving Android’s

NotificationManagerService and StatusBarService classes

(issue id: 7986), which froze the entire phone’s inter-

face. We made a small Android application in which

one thread issues a notification, and a second thread

expands the status bar, in the same time. The two

threads called concurrently the methods NotificationMan-
agerService.enqueueNotificationWithTag and StatusBarSer-
vice$H.handleMessage, which made the two services dead-

lock. This deadlock made the whole phone’s interface hang.

Dimmunix detected the deadlock and saved its signature in

the persistent history. After rebooting the phone, Dimmunix

successfully avoided any reoccurrence of the deadlock.

We profiled the synchronization behavior of 8 Android

applications, with Dimmunix disabled. The results are shown

in Table I. For each application, we profiled its synchro-

nization behavior during several minutes of intensive usage;

then, we selected the 30 seconds interval with the highest

average synchronization throughput. In these time intervals,

the 8 applications perform 309-1952 synchronizations per

second, using 23-119 threads.

Table I
STATISTICS ABOUT VARIOUS ANDROID APPLICATIONS.

Application Threads Syncs/sec
Memory consumption

Dimmunix: 52% Vanilla: 50%

Email 46 1,952 15.8 MB 15.0 MB

Browser 61 1,411 38.9 MB 37.9 MB

Maps 119 1,143 23.7 MB 22.9 MB

Market 78 891 17.9 MB 17.3 MB

Calendar 26 815 14.4 MB 14.0 MB

Talk 33 527 11.2 MB 10.7 MB

Angry Birds 23 325 29.7 MB 29.3 MB

Camera 26 309 11.8 MB 11.4 MB

To measure the performance overhead, we reproduced

in a microbenchmark the most intensive synchronization

behavior that we observed in the 8 applications we stud-

ied. The microbenchmark runs 2-512 threads, that execute

synchronized blocks on random lock objects, to avoid con-

tention; lock contention has the undesired effect of hiding the

performance overhead. We do not use sleeps, because they

hide the performance overhead; we use busy waits instead, to

simulate computation inside and outside the critical sections.

We use a history of 64-256 synthetic signatures, to simulate

the scenario in which many synchronization statements are

involved in deadlock bugs. The microbenchmark executes

1738-1756 synchronizations per second, with Dimmunix

disabled; this is similar to the synchronization throughput

of the most lock-intensive applications that we studied (i.e.,

Email and Browser). On the Dimmunix-enabled Android

OS, the microbenchmark runs 1657-1681 synchronizations

per second. This means 4-5% performance overhead. Most

of the overhead is due to the call stack retrieval, i.e., the

calls to dvmGetCallStack.

We also measured the power consumption after an in-

tensive usage. With and without Dimmunix, Android OS

reported that the Android applications and the OS are

responsible for 14% of the power consumption. Therefore,

Dimmunix does not increase the power consumption.

We evaluated the memory overhead incurred by Android

Dimmunix; the results are shown in Table I. Dimmunix

incurs 1.3-5.3% memory overhead in the 8 applications we

studied. Overall, for all the running applications, the memory

overhead is 4%; the overall memory consumption is 52% for

the Dimmunix-enabled Android OS, and 50% for the vanilla

Android OS.

VI. CONCLUSION

We implemented Dimmunix for Android OS, within the

Dalvik VM. Android Dimmunix provides deadlock immu-

nity to all the applications running on an Android phone,

with small performance and memory overheads, i.e., 4-5%

and 4%, respectively. Therefore, Android Dimmunix is a

practical solution for protecting mobile applications against

deadlock bugs.

REFERENCES

[1] H. Jula, D. Tralamazza, C. Zamfir, and G. Can-

dea, “Deadlock immunity: Enabling systems to defend

against deadlocks,” in Symp. on Operating Sys. Design
and Implem., 2008.

[2] Y. Nir-Buchbinder, R. Tzoref, and S. Ur, “Deadlocks:

From exhibiting to healing,” in Workshop on Runtime
Verification, 2008.

[3] Z. Letko, T. Vojnar, and B. Krena, “Atomrace: Data

race and atomicity violation detector and healer,” in

Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, 2008.

[4] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar,

“Healing data races on-the-fly,” in Workshop on Parallel
and Distributed Systems: Testing, Analysis, and Debug-
ging (PADTAD), 2007.

[5] L. Chew and D. Lie, “Kivati: fast detection and preven-

tion of atomicity violations,” in ACM EuroSys European
Conf. on Computer Systems, 2010.

[6] M. Costa, M. Castro, L. Zhou, L. Zhang, and

M. Peinado, “Bouncer: Securing software by blocking

bad input,” in Symp. on Operating Systems Principles,

2007.

[7] “AspectJ,” http://www.eclipse.org/aspectj.

6

